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Materials and Methods 
 
Mice 

Wild-type male C57BL/6, 129S1/Sv and Balb/c mice were purchased from The 
Jackson Laboratory at 11 weeks of age. Animals were rested in our animal facility for 1 
week and sacrificed at 12 weeks of age. All mice were housed in an American 
Association for the Accreditation of Laboratory Animal Care–accredited animal facility 
and maintained in specific pathogen-free conditions. Animal experiments were approved 
and conducted in accordance with Stanford University Asia Pacific Laboratory 
Accreditation Cooperation #13605. 

 
Antibodies 

A summary of all mass cytometry antibodies, reporter isotopes and concentrations 
used for analysis can be found in Methods Table 1. Primary conjugates of mass 
cytometry antibodies were prepared 100 µg at a time using the MaxPAR antibody 
conjugation kit (DVS Sciences, Toronto, Canada) according to the manufacturer’s 
recommended protocol. Following labeling, antibodies were diluted in Candor PBS 
Antibody Stabilization solution (Candor Bioscience GmbH, Wangen, Germany) 
supplemented with 0.02% NaN3 to between 0.1 and 0.3 mg/mL and stored long-term at 
4°C. Each antibody clone and lot was titrated to optimal staining concentrations using 
primary murine samples. 

  
Cell Preparation 

All tissue preparations were performed simultaneously from each individual mouse. 
After euthanasia by C02 inhalation, peripheral blood was collected via the posterior vena 
cava prior to perfusion of the animal and transferred into sodium heparin-coated vacuum 
tubes 1:1 dilution in RMPI 1640. Spleens, lymph nodes and thymi were homogenized in 
PBS at 4˚C. Bone marrow was flushed from femuri and resuspended in PBS at 4˚. Lungs 
and liver were finely minced and digested in RPMI 1640 with 2% FCS, 1 mg/ml 
collagenase IV, and 0.1 mg/ml DNase I. Liver suspensions were resuspended in ACK 
lysis buffer, washed in PBS with 2% FCS and 2 mM EDTA, and enriched by density 
gradient centrifugation using Optiprep (AxisShield, Oslo, Norway). Colons were fileted 
in RPMI with 10% FCS and cut into 0.5cm pieces before washing in HBSS with 0.015% 
DTT for 15 min at on a stir plate 37˚C. Colons were then washed in HBSS with 5% FCS 
and 25mM HEPES for 30 min at on a stir plate 37˚C and then digested in RPMI with 
10% FCS, 0.167mg/ml Liberase TL (Roche Applied Science, Indianapolis, IN) and 
0.25mg/ml DNase I for 30 min on a stir plate at 37˚C. Cells were then homogenized in 
RPMI with 10% FCS. Small intestines were fileted in RPMI with 10% FCS and cut into 
0.5cm pieces before washing twice in HBSS with 10% FCS, 25mM EDTA and 2mM 
HEPES for 15 min on a stir plate at 37˚C. Small intestine were then washed in RPMI 
1640 with 10% FCS for 10 min on a stir plate at 37˚C and then digested three times in 
RPMI with 10% FCS, 0.167mg/ml Liberase TL (Roche Applied Science, Indianapolis, 
IN) and 0.25mg/ml DNase I for 20 min on a stir plate at 37˚C. After each digestion, the 
re-suspended cells were quenched with RPMI with 10% FCS at 4˚ until the last digestion 
was completed. Cells were then homogenized in RPMI with 10% FCS. All tissues except 
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peripheral blood were washed with PBS with 5mM EDTA and resuspended 1:1 with PBS 
with 5mM EDTA and 100µM Ciaplatin (Enzo Life Sciences, Farmingdale, NY) for 60s 
before quenching 1:1 with PBS with 0.5% BSA and 5mM EDTA to determine viability 
as previously described (64). Cells were centrifuged at 500g for 5 min at 4˚C and 
resuspended in PBS with 0.5% BSA and 5mM EDTA at a density between 1-10*106 
cells/ml. Suspensions and blood were fixed for 10 min at RT using 1:1.4 Proteomic 
Stabilizer according to the manufacturer’s instructions (Smart Tube Inc., Palo Alto, CA) 
and frozen at -80˚C.  

 
Mass-Tag Cellular Barcoding 

Mass-tag cellular barcoding was preformed as previously described with the 
following modifications (Bodenmiller et al., 2012). For each tissue, 1.5*106 cells from 
each animal were barcoded with distinct combinations of stable Pd isotopes chelated by 
isothiocyanobenzyl-EDTA in 0.02% saponin in PBS (65, 66). Cells were washed two 
times in PBS with 0.5% BSA and 0.02% NaN3 and pooled into a single FACS tube (BD 
Biosciences). After data collection, each condition was deconvoluted using a mass 
cytometry debarcoding algorithm (65). 

 
Mass Cytometry Staining and Measurement 

Cells were resuspended in PBS with 0.5% BSA and 0.02% NaN3 and metal-labeled 
antibodies against CD16/32 were added at 20µg/ml for 5 min at RT on a shaker to block 
Fc receptors. Surface marker antibodies were then added, yielding 500 uL final reaction 
volumes and stained at room temperature for 30min at RT on a shaker. Following 
staining, cells were washed 2 more times with PBS with 0.5% BSA and 0.02% NaN3 
then permeabilized with 4°C methanol for at 10 min at 4°C. Cells were then washed 
twice in PBS with 0.5% BSA and 0.02% NaN3 to remove remaining methanol, and then 
stained with intracellular antibodies in 500 µL for 30 min at RT on a shaker. Cells were 
washed twice in PBS with 0.5% BSA and 0.02% NaN3 and then stained with 1 mL of 
1:4000 191/193Ir DNA intercalator (DVS Sciences, Richmond Hill, Ontario, Canada) 
diluted in PBS with 1.6% PFA overnight. Cells were then washed once with PBS with 
0.5% BSA and 0.02% NaN3 and then two times with double-deionized (dd)H20. Care 
was taken to assure buffers preceding analysis were not contaminated with metals in the 
mass range above 100 Da. Mass cytometry samples were diluted in ddH2O containing 
bead standards (see below) to approximately 106 cells per mL and then analyzed on a 
CyTOFTM mass cytometer (DVS Sciences, Toronto, Canada) equilibrated with ddH2O. 

 
Bead Standard Data Normalization 

Just before analysis, the stained and intercalated cell pellet was resuspended in 
ddH2O containing the bead standard at a concentration ranging between 1 and 2*104 
beads per ml as previously described (35). The bead standards were prepared 
immediately before analysis, and the mixture of beads and cells were filtered through a 
35-ml filter cap FACS tubes (BD Biosciences) before analysis. All mass cytometry files 
were normalized together using the mass cytometry data normalization algorithm freely 
available for download from www.cytobank.org/nolanlab. 

 
Scaffold Map Generation 
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The datasets for each tissue were prepared by combining in a single file all the cell 
events from the different mice. Each sample was clustered independently in 200 clusters 
using the clara function in R. This approach was chosen due to its ability to handle the 
large numbers of events in mass cytometry data. While density peak-based clustering 
algorithms could be incorporated into this pipeline in the future, leading approaches (67) 
require an explicit computation of a distance matrix and the application of a heuristic for 
identifying density peaks that did not translate well to the nature of mass cytometry data 
(Figure S16). For the bone marrow, a graph was constructed by first connecting together 
the nodes representing the manually gated landmark populations and then connecting to 
them the nodes representing the cell clusters. Each node is associated with a vector 
containing the median marker values of the cells in the cluster (blue nodes) or gated 
populations (red nodes). Edge weights were defined as the cosine similarity between 
these vectors after comparing the results from the implementation of several distance 
metrics (Figures S17-S19)(20). Edges of low weight were filtered out. We experimented 
with different threshold values for the weights and we found values of 0.8 for the initial 
subgraph of landmark nodes, and 0.7 for the complete graph to produce satisfying results. 
The graph was then laid out using an in-house R implementation of the ForceAtlas2 
algorithm from the graph visualization software Gephi (68). To overlay the additional 
samples on the bone marrow map the position and identity of the landmark nodes was 
fixed and the clusters of each sample were connected to the landmark nodes as described 
above. Once again the graphs were laid out using ForceAtlas2 but this time only the blue 
nodes were allowed to move. To determine the reliance of the method on the high-
dimensional nature of the data, we additionally generated Scaffold maps using only 30 or 
20 protein parameters to (1) generate the entire map or (2) map unsupervised clusters 
onto the landmarks defined by all measured protein parameters. These results are 
displayed in Figure S20. 

 
Distance Distributions for Statistical Tests 

For the statistical comparison of populations across samples (i.e. Liver versus Bone 
Marrow Macrophages in Figure 2g), the cell clusters were classified according to their 
nearest Landmark population for each sample. Cells belonging to clusters classified into 
the population of interest were pooled for each sample, and cosine similarity was 
calculated from the Landmark position for each cell. A summary statistic was calculated 
for the distribution belonging to each sample (in the case of the above example, we chose 
the median). These values were the compared across the groups of interest i.e. Liver 
samples versus Bone Marrow samples) by a Wilcoxon rank sum test to test the 
hypothesis of interest. 

 
Unsupervised Force-Directed Graph Generation 

Cells were manually gated as Live CD45+ lineage- (Ter119, Ly6G, Siglec-F, CD19, 
B220, CD3, TCRβ, DX5, F4/80, CD11c, PDCA-1, FcεR1α) except for markers as noted. 
The gated cell populations for each tissue were clustered independently in 50 clusters 
using clara in R. The clusters for all the tissues were combined in a single graph with 
edge weights defined as the cosine similarity between the vectors of median marker 
values of each cluster. All the pairwise distances were calculated and for each node only 
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the 10 edges of highest weight were retained. The graph was then laid out using the 
ForceAtlas2 algorithm in Gephi. 

 
Fluorescence-Based Flow Cytometry 

Lung single cell suspensions were prepared as previously described. Cells were 
incubated with 15µg/ml FcX Block (Biolegend) for 5 min at 4˚C to block Fc receptors 
and then stained with the following fluorochrome-conjugated antibodies and DAPI (Life 
Technologies) in 100µl reactions in PBS with 0.5% BSA and 5mM EDTA for 20 min at 
4˚C: CD45.2 - Pacific Blue, SiglecF - AlexaFluor 647, CD11c - APC-Cy7, CD19 - FITC, 
CD49b - PerCP-Cy5.5, B220 - eFluor650, F4/80 - PE, CD8 - PE-Cy7. Cells were washed 
in PBS with 0.5% BSA and 5mM EDTA and centrifuged at 300g for 5 min at 4˚C two 
times and analyzed on an LSR II flow cytometer (BD Biosciences). 
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Supplementary Text 
 
Additional Comments on Scaffold Maps 
On Node Sizes 
As a result of the clustering algorithm, the clusters do not contain an equal number of 
cells, which is the case for most clustering methods. In the paper, we have shown plots 
with clusters scaled in size to reflect the relative number of cells in each. However, since 
larger clusters can occasionally obscure smaller ones, an option in the interface exists to 
scale all equally such that each cluster can be fully viewed. Ultimately, static pictures of 
such complex datasets are a necessary compromise between comprehensiveness and 
interpretability. For this reason, in the interface, we make it easy to toggle between these 
different scaling options. 
 
On the Inclusion of Landmark Nodes 
The inclusion of landmark nodes is meant to facilitate and anchor the interpretability of 
the analysis when assessing global immune system organization. For instance, an 
unsupervised analysis of the dataset is presented (Fig. S14). While the structure can be 
observed, it is not readily relatable to current knowledge. Nevertheless, these approaches 
are not mutually exclusive. We find utility in these unsupervised graphs when limiting 
our analysis to a single cell population (Fig. 6). However, for global or otherwise broad 
analyses, the main advantages of incorporating landmarks are two-fold. Landmarks (1) 
provide points of reference for intuition during data analysis, facilitating the 
interpretation of the mapping results and (2) provide a logical way to incorporate new 
data files, making the reference framework extensible moving forward. Without 
landmarks, there would be no way to intuitively incorporate new data other than aligning 
cell clusters to their nearest neighbor in a prior analysis. Doing so would necessarily bias 
the analysis and prevent the discovery of new cell states by constraining the realm of 
possibilities to those observed in a prior experiment. By using landmarks, the data from 
independent samples can be oriented with respect to these reference points, but new data 
are not confined to the space occupied by the prior data.  
 
The incorporation of landmark nodes does not, in any way, impact the clustering. The 
clustering is performed independently for each sample as the first step of the analysis 
with absolutely no input from the manually defined populations. The landmarks are later 
then used to determine distance from some standard.  Using the bone marrow as the 
reference for this particular study was decided upon because the bone marrow is the only 
organ that contains most developing immune cells as well as mature immune cells. 
Therefore, it is well suited for defining the landmark populations for these analyses. As a 
comparison, we show maps for which the spleen is used as the reference (Fig. S5). The 
organization is strikingly similar to that of the bone marrow maps, but no progenitor 
populations can be identified in this organ. Therefore, when viewing the bone marrow 
data, cell clusters containing these cells early in development are connected by longer 
lines and have no intuitive place to localize in the map. Along these lines, it is important 
to note that for studies limited to one organ (or more generally, one type of sample), a 
new reference can easily be defined using populations from that particular tissue of 
interest. As an example, the circadian rhythms in the lungs can alternatively be viewed 
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using Scaffold maps with landmark populations derived from the lungs instead (Fig. S7).  
 
On Choosing a Clustering Algorithm 
We chose to adopt the CLARA clustering algorithm for a few reasons. One is practicality 
for the data at hand: The algorithm can deal with very large datasets, which is something 
that neither hierarchical clustering nor more sophisticated methods requiring explicit 
computation of a distance matrix, such as that proposed recently by Rodriguez and Laio 
(67), can do.  
 
Two important issues in the evaluation of a clustering method include: 

1) Defining the number of “true” clusters in the data 
2) Assessing the quality of the resulting clusters 

 
In terms of assessing the quality of the clusters themselves, this is a hotly debated topic in 
the literature (29). Defining what constitutes a successful clustering is exceptionally 
difficult in general, but even more so for flow cytometry data, where there exists no 
general consensus on what defines a distinct cell population since function might change 
across a spectrum of values that themselves are composed by multiple protein marker 
changes. Unfortunately, the immune repertoire does not come in neatly defined bins, 
much as clustering algorithms have shown. 
 
One of the reasons we initiated the development of Scaffold maps was precisely to 
sidestep these issues by providing investigators with an effective way to browse single-
cell data. Arriving at the “correct” number of clusters is not required to meet this 
objective. Notably, the biological function of cells may not strictly partition by regions of 
peak density with the markers used for the clustering, and the measure of density will be 
dependent on the parameters measured. We therefore chose not to risk oversimplifying 
the analysis by establishing the expectation that any clustering algorithm will perfectly 
divide cells according to their biological behavior and function. Rather, we use clustering 
as a way to alleviate the inherent redundancy of the data and make the visual 
representation more manageable. In the past, when developing the algorithm on smaller 
datasets, we have also used hierarchical clustering without appreciable differences in the 
resulting maps. 
 
In comparison, Rodriguez and Laio’s clustering method based on density peaks is based 
on “a heuristic criterion for finding independent density peaks” (67). Essentially this 
heuristic involves manually examining a plot of local density versus distance from all 
other points for all the observations in the dataset. Cluster centers should appear as 
isolated points of high density (i.e. high local density, large distance from other 
observations). We have tried to apply this heuristic to our data (albeit with some 
difficulties, as elaborated upon below) but did not get an answer as clear-cut as the ones 
presented in Rodriguez & Laio’s paper. Depending on how the plot is interpreted, the 
number of clusters appears to be around 10-20 (Fig. S16), which is unreasonably low 
given the fact that we can manually identify at least 20 populations from the data. Based 
on these results, it would seem that a straightforward application of the heuristics does 
not yield satisfactory results on high-dimensional flow cytometry data. It is absolutely 
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possible that specific modifications of this method could be developed for the analysis of 
this kind of data, with potentially good results. As noted, the modular construction of the 
Scaffold maps algorithm would enable the incorporation of other clustering methods 
quite easily in the future. 
 
Unfortunately, algorithms that require an explicit computation of the distance matrix 
could not handle the amount of data we have been able to cluster with CLARA—our 
average data file contains over 1-5*106 observations. It is possible that an adaptation 
could be eventually developed that allows the analysis of very large datasets with such 
methods, including Rodriguez & Laio’s method. Future developments in density-peak 
clustering methods could easily be incorporated into the Scaffold maps pipeline moving 
forward. 
 
On the Choice of Similarity Metric 
A key question in developing the method was the selection of the similarity metric. We 
explored the use of cosine and angular similarities, as well as Euclidean, Manhattan and 
Mahalanobis distances, which were converted to similarities according to the formula 
similarity = (1 / (1 + distance)). We also considered measures based on a discretization of 
the data (e.g. Jaccard), but the complex shapes of the distributions observed in real data 
proved extremely difficult to discretize in a satisfactory and meaningful manner. 
 
The best distance metric to use in a given application strongly depends on the specific 
characteristics of the data at hand. In this case, one logical way to investigate the effect of 
different distance metrics is to analyze how similar (or different) the twenty manually 
identified populations are under said metrics (Fig. S17). Interestingly, cosine, angular, 
Euclidean and Manhattan similarities all behave very similarly in this analysis. If we 
define the population centroid as the median of the 39 marker values, and we then cluster 
the centroids using these different metrics, we obtain very similar groupings. For instance 
the different types of T cells form a separate group, as do the myeloid cells and the 
various progenitor populations. The Mahalanobis similarity gives slightly different 
results, with NKT and γδ T cells forming a separate group together with NK cells, and 
GMP clustering with monocytes and eosinophils. 
 
The first step before running the layout algorithm is to filter the list of pairwise distances 
in order to retain only the highest-scoring edges. When using other metrics it was 
necessary to adopt a percentile-based filtering because the different similarity measures 
result in a different distribution of similarities (Fig. S18). We retained the top 18% of 
similarity values, which results in a tractable but robust total number of edges for 
interpretation. 
 
Having looked at the behavior of the distance metrics per se, it was then necessary to 
consider how these interact with the force-directed algorithm, which is responsible for 
translating the similarities in the final shape of the Scaffold map. In the ForceAtlas2 
implementation the similarity between two connected nodes is transformed in attraction 
strength according to a parameter called “edge weight influence.” This parameter acts as 
an exponent, so that the final attraction strength is calculated as F = (similarity) ^ (edge 



 
 

9 
 

weight). Since all the similarity values are in the range [0, 1], higher edge weights have 
the effect of “compressing” the distribution of similarity scores. Using Euclidean, 
Manhattan and Mahalanobis metrics resulted in a much narrower distribution of 
similarities than did cosine similarity, while converting cosine similarity to angular 
similarity resulted in an intermediate situation (Fig. S18). To account for this difference, 
we used an edge weight parameter of 1 for Euclidean, Manhattan and Mahalanobis 
metrics and 6 for angular similarity. It is important to note that this adjustment is only 
necessary because of the specific way the layout algorithm converts similarities to 2D 
distances—an inherently ad-hoc process intended to give visually pleasing results—and 
does not represent a fundamental difference in the behavior of the distance metrics.  
 
Once these adjustments are made, Euclidean, Manhattan and Mahalanobis metrics result 
in similar maps, which are visually more compact compared to angular and cosine, which 
yield essentially identical results (Fig. S19). While the results are similar we think that 
the less compact maps (implementing cosine or angular similarity) makes them easier to 
interpret. These maps have more “resolution,” probably a result of the fact that the cosine 
and angular distance metrics result in a broader distribution of similarity values (Fig. 
S18). 
 
We would also like to offer the following, more general considerations. First, this metric 
scales easily and efficiently into high-dimensional spaces. Because the metric is 
analogous to correlation, it offers an attractive compromise by considering the Boolean 
expression of any particular parameter (positive/negative) while also allowing its absolute 
magnitude of expression to factor into the similarity metric. Moreover, contrary to 
Euclidean distance, cosine similarity does not strongly favor dimensions with higher 
scales. This is a very attractive property because the expression of a specific marker can 
be crucial in defining a cell type even if its absolute expression value is lower compared 
to other parameters. For similar reasons, our laboratory chose to utilize cosine distance in 
a different, recent publication describing a new approach to define a linear differentiation 
path in single-cell data (20). Cosine similarity is a more robust metric when mapping 
archival datasets, where measured values for the same marker can have vastly different 
numeric ranges. Cosine similarity is an ideal metric in this context because it is scale-
independent, and the scale of the actual measured values can vary across different 
cytometers, fluorophores, antibody clones etc. 
 
However, the system is meant to provide a community-organizable approach for bringing 
multiple datasets (and a modular approach for other metrics) to a framework for 
comparison.  Any of the organizing or clustering algorithms that lay behind the resulting 
output are “modular” insofar as another researcher might decide that for their purposes a 
different landmark set, a different distance metric, or a different clustering approach 
would best represent the data. 
 
On Metrics and the Utility of Multidimensional Distance 
Enumeration of cell types, which is a utility of Scaffold maps, can be accomplished by 
manual identification through hand gating based on canonical phenotypic markers. Our 
method instead utilizes the similarities across all measured dimensions to compare any 
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group of cells to well-established immune cell types (the so-called landmark nodes). This 
therefore leverages all of the information collected in order to make this determination 
rather than merely relying on the expression of the 1 or 2 canonical makers on which a 
manual analysis is based. For instance, the fidelity of some canonical lineage markers 
depends on the tissue of origin (as an example macrophages in the alveoli of the lung 
express the DC marker CD11c and the eosinophil marker Siglec-F) as well as the 
activation state. We therefore believe that utilizing multidimensional similarity provides 
distinct advantages. Moreover, while manual analysis of data requires expertise, is 
subjective and is laborious, the Scaffold maps algorithm increases the consistency, 
objectivity and throughput of data analysis while providing clusters that could be 
compared using appropriate metrics.  
 
Most importantly, manual gating provides no information regarding the cellular 
expression of parameters that are not utilized for the identification of a particular cell 
type. In contrast, by plotting distance as similarity in Scaffold maps, this information is 
intrinsically reflected in the position of cell clusters with respect to the classical landmark 
cell populations. By enabling (1) the graph to be colored based on the expression of 
different parameters, (2) comparing the distribution of any parameters of interest for a 
cell cluster compared to its nearest landmark population(s) as histograms, and (3) the 
generation of unsupervised force-directed graphical landscapes for any population of 
interest, we provide several tools to discern why certain cells position themselves in their 
respective location in the Scaffold maps. 
 
We also utilized distance in multidimensional space as a metric by which populations can 
be compared across samples for statistical inference. Multiple valid approaches to 
quantifying elements of graphical networks exist. Our idea with a reference map of this 
nature is to provide a framework and an obvious metric, but leave open the opportunities 
for other metrics to be applied.  A straightforward metric that we have used is the 
distance of cells from a landmark as a means to compare differences in cell populations 
across samples. By building a distribution of distances for all cells closest to any given 
landmark, summary statistics of multidimensional distance (medians, percentiles, etc.) 
can be used to test whether the characteristics of any population are significantly different 
across sample types. For example, we used such an analysis to arrive at the conclusion 
that macrophages in the liver are significantly different from the macrophages in the bone 
marrow in their phenotypic characteristics (Fig. 2G).  
 
On Data Dimensionality and Effective Mapping 
With respect to varying the number of proteins utilized for the mapping, two examples 
are included in the manuscript (Fig. 5). The first of these shows the effect of including 15 
proteins in the mapping of cells from the peripheral blood. The plot using all measured 
parameters is included as Panel A while the plot using only 15 is Panel C. Notably, the 
results are fairly similar, suggesting that there is some redundancy encoded in the 
biological system.  

 
This is pushed further by using the information from only 8 proteins in the bottom of Fig. 
5. We compare the organization of the bone marrow using all information from the 
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experiment (Fig. 5D) to the organization resulting from only 8 proteins (Fig. 5F). 
Comparing the results of these two graphs, it is apparent that the global organization is 
somewhat conserved. However, in Panel F, the graph using only 8 dimensions lacks 
resolution in both the myeloid region and the progenitor region of the graph. Because not 
enough information is included to distinguish between several related cell types, the 
nodes containing these cells collapse into center of these “zones,” unable to distinguish 
which specific population they belong to. 

 
We also include the results of dropping the bone marrow analysis to 30 or 20 parameters 
used to map unsupervised clusters (Fig. S20). These plots can be located on the left hand 
side of the figure, where the location of the landmark nodes is fixed from the original 
analysis, but the unsupervised clusters are mapped using fewer dimensions. The effect of 
using the lower-dimensional data to establish the localization of both the landmark and 
unsupervised nodes can be found in the right hand side of the figure. In these maps, 
reducing the information does influence the localization of the landmarks with respect to 
one another, especially in lower-dimensional space (≤20 parameters), emphasizing the 
advantage of utilizing higher-dimensional data to establish the initial map of the reference 
sample. That said, the difference in the map organization above this number of 
parameters is fairly minimal, strongly suggesting that the 39 dimensions we measure are 
sufficient to devise a robust organization. Notwithstanding, the maps still accurately 
represent the relationships between unsupervised cell clusters and landmark populations 
given the amount of information provided in the lower-dimensional space. 
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Fig. S1.  
Mass cytometry experimental design and workflow.  
(A) Model workflow for mass cytometry reference map experiment as described in 
the Materials and Methods. 
(B) Typical gating strategy for murine bone marrow to define landmark populations 
for Scaffold maps.
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Fig. S2  
Bone marrow Scaffold maps from individual C57BL/6 mice. Representative Scaffold 
maps are shown using clusters from bone marrow samples from individual C57BL/6 
mice. 
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Fig. S3  
Immune composition by tissue of origin. Median frequencies of each major cell 
population by tissue of origin for C57BL/6, 129S1/Sv and Balb/c mice as a percent of 
total leukocytes (Live Single Ter119-CD45+ cells). 
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Fig. S4  
Immune cell population frequencies by tissue of origin. Mean frequency and standard 
deviation of every major immune cell population across all tissues surveyed by mass 
cytometry in C57BL/6 mice (4 independent experiments, n=3-4 for each). 
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Fig. S5  
Scaffold map analysis using populations from the spleen as the Landmark nodes. Maps 
shown are for C57BL/6 mice. 
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Fig. S6  
Mapping immune organization in the gut. Scaffold maps for the gastrointestinal tract 
from C57BL/6 mice using bone marrow as the reference sample to define landmark 
nodes (red). (A) Small Intestine (B) Colon. 
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Fig. S7  
Circadian remodeling of immune organization in the lungs viewed on Scaffold maps built 
using lung immune populations as the Landmark nodes. 
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Fig. S8  
Macrophage sub-types in the lung are differently remodeled according to circadian 
rhythms. (A) Unsupervised force-directed graph of macrophages from the lung colored 
by (top) time point of collection or (bottom) expression of the indicated protein. (B) 
Quantitation of alveolar and interstitial macrophages as a frequency of total leukocytes 
(CD45+) or (C) total macrophages (F4/80+CD64+) from the original mass cytometry 
dataset (n=7 morning and afternoon) and a follow-up fluorescence experiment (n=7 
morning; n=8 afternoon). Bars represent mean ± SEM, and p-values result from two-
sided t-test. * denotes p < 0.05; ** denotes p < 0.01; *** denotes p < 0.001. 
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Fig. S9 
Systemic T cell landscape colored by tissue of origin or by the dynamic range of the 
phenotypic marker as noted. 
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Fig. S10 
Systemic B cell landscape colored by tissue of origin or by the dynamic range of the 
phenotypic marker as noted. 
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Fig. S11 
Systemic NK cell landscape colored by tissue of origin or by the dynamic range of the 
phenotypic marker as noted. 
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Fig. S12 
Systemic conventional dendritic cell landscape colored by tissue of origin or by the 
dynamic range of the phenotypic marker as noted. 
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Fig. S13 
Systemic macrophage landscape colored by tissue of origin or by the dynamic range of 
the phenotypic marker as noted. 
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Fig. S14 
Unsupervised force-directed graph including all cell clusters from all organs from 
C57BL/6 mice. 
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Fig. S15 
A model for an extensible, dynamic and community-collated immune reference map. 
Using the approaches described here, it will become possible to assemble an analytical 
framework in which users can dynamically interrogate single-cell immune data. At the 
most basic level, this will enable mining of the datasets described here to investigate the 
characteristics of immunity across the body and between mouse strains by dynamically 
“mousing over” cell clusters to access their underlying metadata. Using Scaffold mapping 
to align data from independent experiments in a data-driven fashion, this resource could 
transform into a repository collated by the community, unifying investigations of immune 
cell characteristics and behaviors into a single, interactive resource. 
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Fig. S16  
Effect of using Rodriquez and Laio’s clustering method (Science, 2014) on the bone 
marrow from a representative mouse. Note that computation of the distance matrix for all 
mice was extraordinarily time consuming. Additionally, their heuristic does not provide a 
useful threshold for cluster identification in these complex data. 
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Fig. S17 
Clustering of landmark cell populations for each of several distance metrics. The results 
are very similar, with Mahalanobis distance resulting in some minor differences. 
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Fig. S18 
The distribution of similarity measures for all clusters and landmarks for each potential 
choice of distance metric. Note the compressed range for Euclidean, Mahalanobis and 
Manhattan distances as compared to Cosine or Angular. 
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Fig. S19 
Comparison of Scaffold map analysis using different distance metrics.  Maps shown 
represent the bone marrow of C57BL/6 mice. 
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Fig. S20 
Scaffold map analysis when fewer parameters are used either (1-Left) to map the 
unsupervised clusters onto the original Landmarks defined using all parameters or (2-
Right) using fewer parameters to define both the Landmarks and the position of the 
unsupervised clusters. 
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Table S1. 
Antibodies utilized for mass cytometry experiment. All reagents except those supplied by 
DVS Sciences were conjugated, validated and titrated in house. 
Antigen 
Target 

Clone Supplier Elemental 
Isotope 

Final Conc. 
(µg/mL) Ter119 TER119 Biolegend In113 4 

CD45.2 104 Biolegend In115 4 
Ly6G 1A8 Biolegend La139 2 
IgD 11-26c.2a BD Pr141 1 
CD11c N418 DVS Nd142 1 ul 
F4/80 BM8 Biolegend Nd143 8 
CD3 17A2 BD Nd144 4 
NKp46 29A1.4 Biolegend Nd145 8 
CD23 B3B4 BD Nd146 2 
CD34 RAM34 BD Sm147 16 
CD115 AFS98 Biolegend Nd148 16 
CD19 1D3 BD Sm149 2 
PDCA-1 120g8 Imgenex Nd150 2 
CD8α 53-6.7 Biolegend Eu151 4 
Ly6C HK1.4 Novus Sm152 0.5 
CD4 RM4-5 Biolegend Eu153 2 
CD11b M1/70 Biolegend Sm154 2 
CD27 LG.3A10 Biolegend Gd155 1 
CD16/32 2.4G2 BD Gd156 8 
Siglec-F E50-2440 BD Gd157 4 
Foxp3 NRRF-30 eBioscienc

e 
Gd158 8 

B220 RA3-6B2 BD Tb159 2 
CD5 53-7.3 DVS Gd160 1 ul 
FcεR1α MAR-1 Biolegend Dy161 8 
TCRγδ GL3 Biolegend Dy162 2 
CCR7 4B12 Biolegend Dy163 8 
Sca1 D7 DVS Dy164 1 ul 
CD49b HMα2 Biolegend Ho165 2 
cKit 2B8 DVS Er166 1 ul 
CD150 TC15-

12F12.2 
DVS Er167 1 ul 

CD25 3C7 BD Er168 2 
TCRb H57-597 DVS Tm169 2 ul 
CD43 S7 BD Er170 2 
CD64 X54-5/7.1 Biolegend Yb171 10 
CD138 281-2 Biolegend Yb172 1 
CD103 2E7 Biolegend Yb173 4 
IgM RMM-1 Biolegend Yb174 8 
CD44 IM7 BD Lu175 0.25 
MHC II M5/114.15.2 Biolegend Yb176 0.25 
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Table S2. 
Frequencies of major immune cell populations by tissue of origin and inbred mouse strain 
as determined by manual gating. Values are mean ± SD. 
 
Please see attached Excel file. 
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Table S3. 
Deviant cellular phenotypes identified in the immune system reference map. 
 

Major Distinguishing 
Markers 

Minor Distinguishing 
Markers 

Tissue Specificity  
(if any) 

Described as / Similar 
to 
 

CD3, TCRβ, TCRγδ, CD4, 
CD8 

CD5, CD43, CD27 Small Intestine, 
Colon, Lungs 

MAIT cells 

B220, CD19, CD44, Sca-1 IgM, IgD, CD23 Thymus B cell subset? 
CD49b, CD11b, CD27, 

CD34, cKit 
CD16/32, NKp46 Bone Marrow NK cell subset? 

CD43, CD11b, CD16/32 
Ly6C, Ly6G 

CD64, CD44, MHC II Lung Myeloid subset? 

PDCA-1, B220, CD11c MHC II, CD16/32 Small Intestine, 
Colon 

pDC? 

CD3, TCRβ, Foxp3, CD4, 
CD25 

CD44, CD27 Mixed CD25- Foxp3+ Treg 

CD16/32, F4/80, Siglec-F, 
CD44, PDCA-1, MHC II 

Sca-1, Ly6C Liver Myeloid subset? 

CD11c, CD16/32, CD44, 
MHC II 

c-Kit, CD11b Liver Myeloid subset? 
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Table S4. 
Readily observable stratifications of immune cell populations by expression of 
phenotypic markers in population-specific landscapes generated by force-directed graphs. 
Accompanying visualizations can be found in Figures S5-S9. 
 

Major Population Major Stratifying 
Markers 

Minor Stratifying 
Markers 

Other Relevant 
Markers Not Included 

T cells CD3, TCRβ, TCRγδ, 
CD4, CD8 

CCR7, CD5, CD25, 
CD27, CD43, CD44, 
CD49b, Foxp3, Ly6C, 
Sca-1 

CD62L, CD90, T-bet, 
GATA-3, RORγt, Bcl6, 
NK1.1, CD122, CD24 

B cells B220, CD19, IgM, IgD, 
MHC II, CD138 

CCR7, CD5, CD23, 
CD44, CD16/32, Sca-1, 
CD43 

CD93, CD127, CD24, 
CD21, IgG, IgE, IgA 

NK cells CD49b, CD11b, CD27 CD34, CD43, CD44, 
CD16/32, cKit, Ly6C, 
NKp46, Sca-1 

NK1.1, Ly49H, 
Ly49C/I, NKG2D, 
NKG2A, KLRG1 

cDC CD11c, MHC II, 
CD11b, CD4, CD8,  

CCR7, CD43, CD44, 
CD103, CD16/32, cKit, 
Sca-1 

DNGR-1, CD205, 
CD207, Dectin-1, 
SIRPα 

Macrophages CD11b, CD11c, CD64, 
F4/80, Siglec-F 

CD44, CD115, 
CD16/32, Ly6C, MHC 
II, Sca-1 

CD169, MerTK 

Monocytes CD11b, CD115, Ly6C, 
MHC II 

CCR7, CD4, CD11c, 
CD43, CD44, CD16/32, 
Sca-1 
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